

X

×

×

X

 \times

By Mark Holthaus 1/24/2023

ACADEMIC-INDUSTRY 2023 LIQUID ROCKET SYMPOSIUM

Why Perform A Water Flow Test?

- Determine if pressurant regulator is adequate for a pressure fed system
 - Pressure during propellant flow
 - Pressure drops
 - Thrust will drop with tank
 pressure
 - Regulator is inadequate
 - Excessive pressure drops in plumbing
 - Use helium instead of nitrogen
 - Pressure stays constant
 - Thrust will be as expected
 - Regulator is adequate
 - Plumbing is adequate

It Is Also A Good Time To Practice a Wet-Rehearsal

- Propellant and Pressurant Loading/Unloading
- Systems Integration
 - Ground Support Equipment
 - Control Console
 - Procedures
 - Countdown

When to Perform Water Flow Testing?

- Before the propulsion team commits to a rocket engine static test firing
- This test would validate:
 - Static firing test stand pressurant subsystem
 - Static firing test stand propellant loading/unloading
 - Ground support equipment
 - Control console
 - Procedures

Water Flow Testing Must Be Performed in a Safe Area

- There is no ignition
 - No fire hazard
- The pressurant and propellant tanks will be brought to full-pressure for the first time
 - High-pressure hazard
 - Tank rupture
 - Throwing metal parts
 - Perform away from
 - Buildings
 - People
 - Perform in open field or concrete test cell
 - Make sure there is adequate drainage
 - Personnel stay safe distance away when
 pressurized

How To Perform the Water Flow Test?

X

×

 \times

X

ACADEMIC-INDUSTRY 2023 LIQUID ROCKET SYMPOSIUM 2023 Calculate Water Flow Parameters

- Calculate Propellant Volume Flow Rate
- Calculate Orifice Area
- Calculate Orifice Drill Size
- Calculate Amount of Water to Load
- Calculate Initial Pressure of Pressurant Tank

Calculate Propellant Volume Flow Rate

$$F = w_t \cdot I_{sp} \qquad w_t = \frac{F}{I_{sp}} = \frac{500}{239} = 2.09 \text{-lb/sec}$$
$$r = \frac{O}{F} = \frac{w_0}{w_F} \qquad w_0 = \frac{r \cdot w_t}{r+1} \qquad w_F = \frac{w_t}{r+1}$$

LOX/75%Ethanol & 25%Water Engine

F—Thrust (500-lb_f)

r – Mixture Ratio (1.3)

I_{SP}—Specific Impulse (239-sec)

 w_t - Total Propellant Flow Rate (lbs/sec)

 w_o - Oxidizer Flow Rate (lbs/sec)

 w_F – Fuel Flow Rate (lbs/sec)

 ρ_O —Density of Liquid Oxygen (71.2-lbs/ft³)

 ρ_F —Density of 75% Ethanol & 25% Water (52.6-lbs/ft³)

v_o—Oxidizer Volumetric Flow Rate (ft3/sec)

v_F—Fuel Volumetric Flow Rate (ft3/sec)

$$w_0 = \frac{1.3 \cdot 2.09}{1.3 + 1} = 1.18$$
-lb/sec

$$w_F = \frac{2.09}{1.3+1} = 0.91$$
-lb/sec

$$v_o = \frac{w_o}{\rho_o} = \frac{1.18}{71.2} = 0.0165 \text{-ft}^3/\text{sec}$$

$$v_F = \frac{w_F}{\rho_F} = \frac{0.91}{71.2} = 0.0173$$
-ft³/sec

Calculate Orifice Area

$$w_{w0} = \rho_w \cdot v_0 = 62.4 \cdot 0.0165 = 1.03 \ lb/sec$$
$$w_{wF} = \rho_w \cdot v_F = 62.4 \cdot 0.0173 = 1.08 \ lb/sec$$
$$w_t = C_d A \sqrt{2g\rho\Delta P} \quad A = \frac{w_w}{C_d \sqrt{2g\rho_w \Delta P}}$$

LOX/75%Ethanol & 25%Water Engine

 ΔP —Injector Input Pressure to Atmosphere (400-psi or 57600-lbs/ft²)

 w_W – Water Flow Rate (lbs/sec)

V_O—Oxidizer Volumetric Flow Rate (ft³/sec)

V_F—Fuel Volumetric Flow Rate (ft³/sec)

A—Area (ft²)

- A_{O} —Oxidizer Orifice Area (ft²)
- A_F —Fuel Orifice Area (ft²)

 ρ_W —Density of Water (62.4-lbs/ft³)

- *g*—Acceleration Due to Gravity (32.2-ft/sec)
- C_d —Discharge Coefficient Cavitating Orifice (0.61)

$$A_0 = \frac{1.03}{0.61 \cdot \sqrt{2 \cdot 32.2 \cdot 62.4 \cdot 57600}} = 0.000111 ft^2$$

$$A_F = \frac{1.08}{0.61 \cdot \sqrt{2 \cdot 32.2 \cdot 62.4 \cdot 57600}} = 0.000116 ft^2$$

Orifice Drill Size

 $A_0 = 0.000111 ft^2 \cdot 144 in^2/ft^2 = 0.0160 in^2$

 $A_F = 0.000116ft^2 \cdot 144 in^2/ft^2 = 0.0168in^2$

LOX/75%Ethanol & 25%Water Engine

 A_o – Oxidizer Orifice Area (in²)

 A_F – Fuel Orifice Area (in²)

D_o– Oxidizer Orifice Diameter (in)

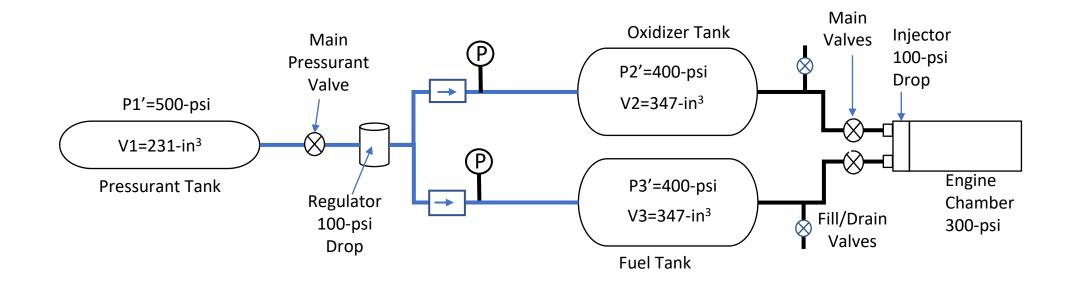
 D_F – Fuel Orifice Diameter (in)

$$A = \frac{\pi}{4} D^2 \qquad D = 2 \cdot \sqrt{A/\pi}$$
$$D_0 = 2 \cdot \sqrt{A_0/\pi} = 2 \cdot \sqrt{0.0160/3.142} = 0.143 in$$
$$D_F = 2 \cdot \sqrt{A_F/\pi} = 2 \cdot \sqrt{0.0168/3.142} = 0.146 in$$

Calculate Amount of Water to Load

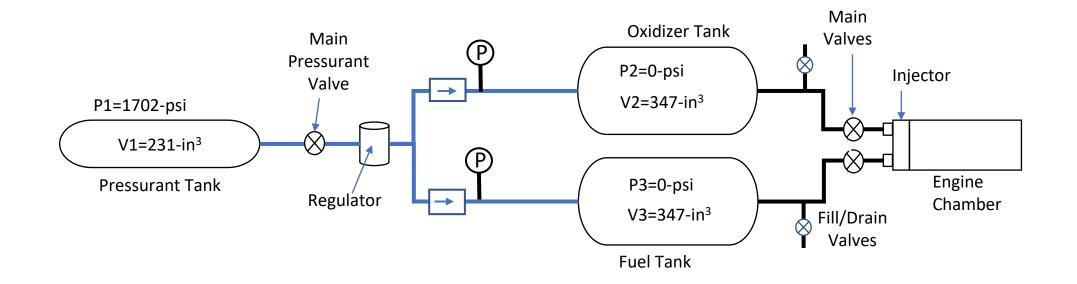
<u>LOX/75%Ethanol & 25%Water Engine</u> w_{WO} - Water Mass Flow Rate for Oxidizer (lbs/sec) w_{WF} - Water Mass Flow Rate for Fuel (lbs/sec) w_{WOt} - Water Total Mass of Oxidizer (lbs) w_{WFt} - Water Total Mass of Fuel (lbs) V_{WO} - Water Volume for Oxidizer (ft³) V_{WF} - Water Volume for Fuel (ft³) V_{O} - Water Volume for Fuel (gal) V_{F} - Water Volume for Fuel (gal) ρ_{W} - Density of Water (62.4-lbs/ft³) Δt --Firing Time (10-sec) $w_{WO} = 1.03 \ lb/sec$ $w_{WF} = 1.08 \ lb/sec$ $w_{WOt} = \Delta t \cdot (W_{WO}) = 10 \cdot 1.03 = 10.3 \ lb$ $w_{WFt} = \Delta t \cdot (W_{WF}) = 10 \cdot 1.08 = 10.8 \ lb$

$$V_{WO} = W_{WOt} \cdot \rho_W = 10.3/62.4 = 0.165 \, ft^3$$


$$V_{WF} = W_{WOFt} \cdot \rho_W = 10.8/62.4 = 0.173 \ ft^3$$

$$V_0 = 0.165 ft^3 \cdot 7.48 gal/ft^3 = 1.23 gal$$

$$V_F = 0.173 ft^3 \cdot 7.48 gal/ft^3 = 1.29 gal$$


Final Pressure of Pressurant Tank

Initial P1?, P3=0, P4=0 Final P2'=500, P3'=400, P4'=400 Assumes 300-psi Chamber Pressure Full Duration of Burn

Calculate Initial Pressure of Pressurant Tank

 $P_{i} \cdot V_{i} = P_{f} \cdot V_{f} \quad Boyle's \ Law$ $P1 \cdot V1 = P1' \cdot V1 + P2' \cdot V2 + P3' \cdot V3$ $P1 \cdot 231 = 500 \cdot 231 + 400 \cdot 347 + 400 \cdot 347$ $P1 = (500 \cdot 231 + 400 \cdot 347 + 400 \cdot 347)/231$ P1 = 1702 -psi

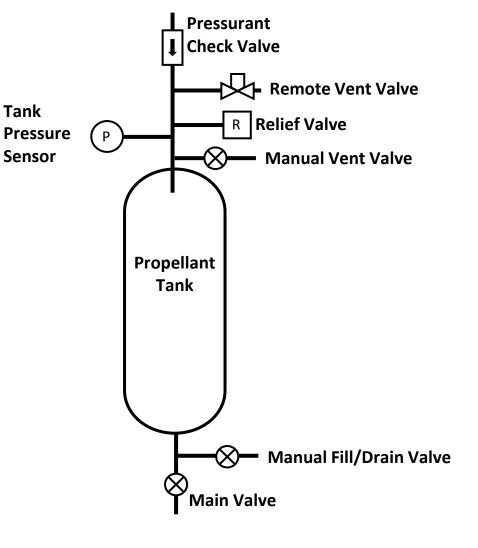
Fuel Loading Demonstration

×

×

 \times

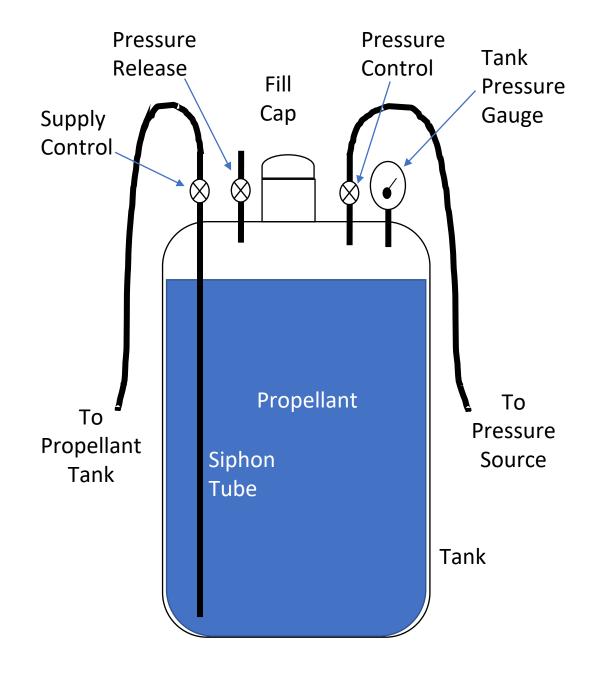
X


X

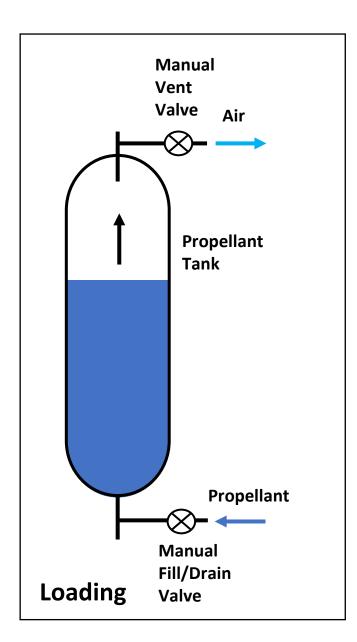
ACADEMIC-INDUSTRY 2023 LIQUID ROCKET SYMPOSIUM

Tank Loading Features

- Applies to static test stands and rockets •
- Near top of tank ٠
 - Manual vent valve •
 - Remote commanded vent valve •
 - Pressure transducer •
 - Check valve •
- Near bottom of tank
 - Fill and drain valve above main valves ٠


Allows for manually draining the rocket/static test stand by gravity and without additional equipment

Tank


Propellant Transfer Tank

- Allows for Safe Handling of Propellant
 - Limits Exposure to Propellant
 - Limits Spillage of Propellants
- Transfer Tank Features
 - Hose to Pressure Source
 - Pressure Control Valve
 - Pressure Release Valve
 - Supply Control Valve
 - Tank Pressure Gage
 - Siphon Tube
 - Hose to Propellant Tank
- All materials compatible with the propellant

Propellant Loading

- Loading (Fill)
 - Do Not Fill from Top of Tank
 - Open Manual Vent to Vent Gas from Top of Tank
 - Fill from Bottom of Tank
 - Use Propellant Transfer Tank
 - Use Pump

Water Flow Test Demonstration

 \times

×

X

X

×

ACADEMIC-INDUSTRY 2023 LIQUID ROCKET SYMPOSIUM

Configure Static Firing Stand or Rocket

- Make orifices
- Remove rocket engine
- Install orifices on each propellant line
- Slowly load commercial pressurant tank to calculated pressure
- Load propellant tanks with the calculated amount of water

Perform the Water Flow Test

- Everyone needs to retreat to a safe distance or protected bunker
- Open main pressurant valve (pressurizing both propellant tanks)
- Perform countdown
- Open main valves

- Measure propellant tank pressures
 - Use data acquisition system
 - Sample 100-hz
 - Pressure should be constant (400-psi)
- Time water flow
 - Time should be as expected (10-sec)

After Test Reconfiguration

- Remove Orifices
- Dry Tanks
- Dry Plumbing
- Cryogenic Propellant
 - Replace Fill and Drain Ball Valve
 - Replace Main Ball Valve
- Install Engine